The Relationship Between AI Self-Efficacy and AI Trust of College Students

Main Article Content

John Patrick Aliño
Albert Jose Rebato
Arah Nova Abrenica
Julian Baguio
Matthew Villanueva
Obenza Dianne Mariz
Kenneth Sumatra

Abstract

This study investigates the relationship between AI self-efficacy and AI trust among college students, employing a quantitative research strategy with a non-experimental correlational approach. Data were collected from 372 participants using a Google Forms questionnaire designed with modified items assessing AI self-efficacy and AI trust, structured on a 5-point Likert scale. The analysis utilized various statistical techniques to ensure the validity and reliability of measurement models, including Average Variance Extracted (AVE) for convergent validity, the Heterotrait-Monotrait Ratio (HTMT) for discriminant validity, and Cronbach’s alpha for internal consistency. Results indicated an R-square value of 0.329, suggesting that AI self-efficacy explains 32.9% of the variance in AI trust, thereby demonstrating a moderate explanatory power. The adjusted R-square value of 0.327 further confirms the absence of overfitting in the model. These findings highlight the significance of AI self-efficacy in fostering trust in AI among students, while suggesting the potential influence of other unexamined factors.

Article Details

How to Cite
Aliño, J. P., Rebato, A. J., Abrenica, A. N., Baguio, J., Villanueva, M., Dianne Mariz, O., & Sumatra, K. (2024). The Relationship Between AI Self-Efficacy and AI Trust of College Students. International Journal of Multidisciplinary Studies in Higher Education, 1(1), 92–102. https://doi.org/10.70847/587961
Section
Articles

References

Alayacyac, J. R. S., Regidor, J. C., Caballo, J. H. S., Abellanosa, J. E., & Monaghan, G. J. G. (2024). Computer Self-Efficacy and Effectiveness of Quipper Learning Management System. American Journal of Smart Technology and Solutions, 3(1), 17–21. https://doi.org/10.54536/ajsts.v3i1.2428

Eatough, V., & Smith, J. A. (2017). Interpretative phenomenological analysis. The Sage handbook of qualitative research in psychology, 193-209. From: https://uk.sagepub.com/en-gb/eur/interpretative-phenomenological-analysis/book250130

Gillespie, N., Lockey, S., Curtis, C., Pool, J., Akbari, A., Mabbott, J., Fentener van Vlissingen, R., Wyndham, J., & Boele, R. (2023). Trust in Artificial Intelligence: A Global Study. The University of Queensland and KPMG Australia. From: https://assets.kpmg.com/content/dam/kpmg/au/pdf/2023/trust-in-ai-global-insights-2023.pdf

Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2022). Multivariate data analysis (8th ed.). Springer. From: https://doi.org/10.1007/978-3-030-80519-7

Hamid, M. R., Sami, W., & Mohmad Sidek, M. H. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT criterion. Journal of Physics: Conference Series, 890, 012163. From: https://doi.org/10.1088/1742-6596/890/1/012163

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135. https://doi.org/10.1007/s11747-014-0403-8 in Human Behavior Reports, 11, 100315. From:

Jacovi, A., Marasovic, A., Millter, T., & Goldberg, Y. (2021). Formalizing trust in artificial intelligence: Prerequisites, causes and goals of human in AI. In Proceedings of the 2021 ACM Conference ion Human Factors in Computing Systems (CHI 2021). From: https://dl.acm.org/doi/10.1145/3442188.3445923

Kelly, S., Kaye, S. A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925.

Kraus, S., Palmer, J., & Melancon, A. (2020). The role of self-efficacy in user trust and acceptance of automated technologies. International Journal of Technology Management. From: https://link.springer.com/chapter/10.1007/978-3-030-02686-8_85

Kreps S, George J, Lushenko P, Rao A. Exploring the artificial intelligence "Trust paradox": Evidence from a survey experiment in the United States. PLoS One. 2023 Jul 18;18(7): e0288109. doi: 10.1371/journal.pone.0288109. PMID: 37463148; PMCID: PMC10353804. From: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10353804/

Mallari, J. B., Lozarita, I. T., Caballo, J. H. S., & Regidor, J. C. (2024). Freshmen’s Technological Expertise and Distance Learning Readiness: A Convergent Parallel Design. American Journal of Smart Technology and Solutions, 3(1), 22–31. https://doi.org/10.54536/ajsts.v3i1.2423

Montag, C., Kraus, J., Baumann, M., & Rozgonjuk, D. (2023). The propensity to trust in (automated) technology mediates the links between technology self-efficacy and fear and acceptance of artificial intelligence. Computers in Human Behavior Reports, 11, 100315.

Obenza-Tanudtanud, D. M. N., & Obenza, B. N. (2024). Assessment of Educational Digital Game-Based Learning and Academic Performance of Grade Six Pupils. American Journal of Interdisciplinary Research and Innovation, 3(1), 1–9. https://doi.org/10.54536/ajiri.v3i1.2338.

Obenza, B. N., Baguio, J. S. I. E., Bardago, K. M. W., Granado, L. B., Loreco, K. C. A., Matugas, L. P., Talaboc, D. J., Zayas, R. K. D. D., Caballo, J. H. S., & Caangay, R. B. R. (2023). The Mediating Effect of AI Trust on AI Self-Efficacy and Attitude Toward AI of College Students. International Journal of Metaverse, 2(1), 1–10. https://doi.org/10.54536/ijm.v2i1.2286

Obenza, B. N., Caballo, J. H. S., Caangay, R. B. R., Makigod, T. E. C., Almocera, S. M., Bayno, J. L. M., Camposano, J. J. R., Cena, S. J. G., Garcia, J. A. K., Labajo, B. F. M., & Tua, A. G. (2024). Analyzing University Students’ Attitude and Behavior Toward AI Using the Extended Unified Theory of Acceptance and Use of Technology Model. American Journal of Applied Statistics and Economics, 3(1), 99–108. From: https://doi.org/10.54536/ajase.v3i1.2510

Obenza, B. N., Go, L. E., Francisco, J. A. M., Buit, E. E. T., Mariano, F. V. B., Cuizon Jr, H. L., Cagabhion, A. J. D., & Agbulos, K. A. J. L. (2024). The Nexus between Cognitive Absorption and AI Literacy of College Students as Moderated by Sex. American Journal of Smart Technology and Solutions, 3(1), 32–39. From: https://doi.org/10.54536/ajsts.v3i1.2603

Obenza, B. N., Go, L. E., Francisco, J. A. M., Buit, E. E. T., Mariano, F. V. B., Cuizon Jr, H. L., Cagabhion, A. J. D., & Agbulos, K. A. J. L. (2024). The Nexus between Cognitive Absorption and AI Literacy of College Students as Moderated by Sex. American Journal of Smart Technology and Solutions, 3(1), 32–39. From: https://doi.org/10.54536/ajsts.v3i1.2603

Sasikala, P., & Ravichandran, R. (2024). Study on the Impact of Artificial Intelligence on Student Learning Outcomes. Journal of Digital Learning and Education, 4(2), 145-155.

Valerio, A. (2024). Anticipating the Impact of Artificial Intelligence in Higher Education: Student Awareness and Ethical Concerns in Zamboanga City, Philippines. Cognizance Journal of Multidisciplinary Studies, 4(6), 10-47760. From: https://cognizancejournal.com/vol4issue6/V4I631.pdf

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.