The Nexus Between AI Literacy and Digital Literacy of Students in Region XI
Main Article Content
Abstract
The disparity in knowledge between AI literacy and digital literacy among students in Region XI is hindering their ability to acquire crucial technology skills. The purpose of this study is to investigate the moderating effect of sex on the relationship between AI literacy and digital literacy. Using a quantitative, non-experimental research design, data were collected through stratified random sampling with surveys and analyzed via Partial Least Squares Structural Equation Modeling (PLS-SEM). Methodological validity was ensured through statistical tests, confirming high reliability for constructs such as AI learning (Cronbach’s alpha = 0.913) and digital literacy (Cronbach’s alpha = 0.966). The findings indicate that AI literacy significantly improves digital literacy, with a path coefficient of 0.523 and a significance level of p < 0.001. Furthermore, self-efficacy (0.586, p < 0.001) and competency (0.612, p < 0.001) serve as crucial mediators in this process. These findings underline the need to incorporate AI literacy into educational curricula. Incorporating AI education can assist in filling knowledge gaps and improving digital skills. According to the study, activities focusing on artificial intelligence should be included in digital literacy programs to better prepare children for a technologically driven future.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright © 2024 APJETPS, its licensors, and contributors. All rights are reserved. For all open access content, the Creative Commons (CC) Attribution 4.0 International Public License terms apply.
References
Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. Management Information Systems Quarterly, 24(4), 665. https://doi.org/10.2307/3250951
Avinç, E., & Doğan, F. (2024). Digital literacy scale: Validity and reliability study with the Rasch model. Education and Information Technologies. https://doi.org/10.1007/s10639-024-12662-7
Balakrishnan, J., & Dwivedi, Y. K. (2021). Role of cognitive absorption in building user trust and experience. Psychology and Marketing, 38(4), 643–668. https://doi.org/10.1002/mar.21462
Becker, K. D., Kiser, L. J., Herr, S. R., Stapleton, L. M., Barksdale, C. L., & Buckingham, S. (2014). Treatment engagement measure [database record]. APA PsycTests. https://doi.org/10.1037/t38934-000
Canan Güngören, Z., Erdoğan, D. G., Uyanik, G. K., & Tolaman, T. D. (2022). The relationship between cognitive absorption and digital literacy skills among secondary school students. Participatory Educational Research, 9(6), 113–129. https://doi.org/10.17275/per.22.131.9.6
Carolus, A., Koch, M. J., Straka, S., Latoschik, M. E., & Wienrich, C. (2023). MAILS - Meta AI literacy scale: Development and testing of an AI literacy questionnaire based on well-founded competency models and psychological change- and meta-competencies. Computers in Human Behavior: Artificial Humans, 1(2), 100014. https://doi.org/10.1016/j.chbah.2023.100014
Claro, M., Preiss, D. D., Martín, E. S., Jara, I., Hinostroza, J. E., Valenzuela, S., Cortes, F., & Nussbaum, M. (2012). Assessment of 21st century ICT skills in Chile: Test design and results from high school level students. Computers & Education, 59(3), 1042–1053. https://doi.org/10.1016/j.compedu.2012.04.004
Creswell, J. W., & Creswell, J. D. (2023). Research design: Qualitative, quantitative, and mixed methods approaches (6th ed.). Sage Publications.
Druga, S., Vu, S. T., Likhith, E., & Qiu, T. (2019). Inclusive AI literacy for kids around the world. Proceedings of FabLearn 2019. https://doi.org/10.1145/3311890.3311904
Eguchi, A. (2021). AI-Robotics and AI literacy. Education in & with robotics to develop 21st-century skills, 75–85. https://doi.org/10.1007/978-3-030-77022-8_7
Escueta, M., Nickow, A. J., Oreopoulos, P., & Quan, V. (2020). Upgrading education with technology: Insights from experimental research. Journal of Economic Literature, 58(4), 897–996. https://doi.org/10.1257/jel.20191507
Etikan, I. (2017). Sampling and sampling methods. Biometrics & Biostatistics International Journal, 5(6). https://doi.org/10.15406/bbij.2017.05.00149
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
Goggin, G., Vromen, A., Weatherall, K., Martin, F., & Sunman, L. (2019). Data and digital rights: Recent Australian developments. Internet Policy Review, 8(1). https://doi.org/10.14763/2019.1.1390
Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge management: An organizational capabilities perspective. Journal of management information systems, 18(1), 185–214. https://doi.org/10.1080/07421222.2001.11045669
Hair, J. F., Anderson, R. E., Babin, B. J., & Black, W. C. (2010). Multivariate data analysis: A global perspective (Vol. 7). Upper Saddle River. https://www.researchgate.net/publication/237009923_Multivariate_Data_Analysis_A_Global_Perspective
Hair, J.F., Hult, G.T.M., Ringle, C.M. and Sarstedt, M. (2016) A primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). 2nd Edition, Sage Publications Inc., Thousand Oaks, CA. https://www.researchgate.net/publication/303522804_A_Primer_on_Partial_Least_Squares_Structural_Equation_Modeling_PLS-SEM_2nd_edition
Hair J.F., Hult GTM, Ringle CM, et al. (2022) A primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), Thousand Oaks, CA: Sage. https://www.researchgate.net/publication/354331182_A_Primer_on_Partial_Least_Squares_Structural_Equation_Modeling_PLS-SEM
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org//10.1108/EBR-11-2018-0203
Hamid, M. R. A., Sami, W., & Sidek, M. H. M. (2017). Discriminant validity assessment: Use of Fornell & Larcker criterion versus HTMT Criterion. Journal of Physics Conference Series, 890, 012163. https://doi.org/10.1088/1742-6596/890/1/012163
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8
Jöreskog, K. G. (1971). Statistical analysis of sets of congeneric tests. Psychometrika, 36(2), 109–133. https://doi.org/10.1007/bf02291393
Joseph, G. V., P., A., M, A. T., Jose, D., Roy, T. V., & Prasad, M. P. (2024). Impact of digital literacy, use of AI tools and peer collaboration on AI assisted learning- perceptions of the university students. Digital Education Review, 45, 43–49. https://doi.org/10.1344/der.2024.45.43-49
Kline, R. B. (2011). Principles and practice of structural equation modeling (3rd ed.). Guilford Press. https://psycnet.apa.org/record/2010-18801-000
Kock, N., & Hadaya, P. (2016). Minimum sample size estimation in PLS‐SEM: The inverse square root and gamma‐exponential methods. Information Systems Journal, 28(1), 227–261. https://doi.org/10.1111/isj.12131
Kong, S. C., Cheung, W. M., & Zhang, G. (2021). Evaluation of an AI literacy course for university students with diverse study backgrounds. Computers & Education: AI, 2, 100026. https://doi.org/10.1016/j.caeai.2021.100026
Lee, J. H., Kim, J. H., Kim, Y. H., Song, Y. M., & Gim, G. Y. (2021). Factors affecting the intention to use Artificial Intelligence-Based Recruitment System: a Structural Equation Modeling (SEM) approach. In Studies in computational intelligence (pp. 111–124). https://doi.org/10.1007/978-3-030-79474-3_8
Long, D., & Magerko, B. (2020). What is AI Literacy? Competencies and Design Considerations. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3313831.3376727
Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence Unleashed: An Argument for AI in Education. London: Pearson Education. https://www.researchgate.net/publication/299561597_Intelligence_Unleashed_An_argument_for_AI_in_Education
Mason, C. H., & Perreault, W. D. (1991). Collinearity, power, and interpretation of multiple regression analysis. Journal of Marketing Research, 28(3), 268. https://doi.org/10.2307/3172863
Ng, D. T. K., Leung, J. K. L., Chu, K. W. S., & Qiao, M. S. (2021). AI literacy: Definition, teaching, evaluation, and ethical Issues. Proceedings of the Association for Information Science and Technology, 58(1), 504–509. https://doi.org/10.1002/pra2.487
Ng, W. (2012). Can we teach digital natives digital literacy? Computers & Education, 59(3), 1065–1078. https://doi.org/10.1016/j.compedu.2012.04.016
Obenza, B. N., Baguio, J. S. I. E., Bardago, K. M. W., Granado, L. B., Loreco, K. C. A., Matugas, L. P., Talaboc, D. J., Zayas, R. K. D. D., Caballo, J. H. S., & Caangay, R. B. R. (2023). The mediating effect of AI trust on AI Self-Efficacy and attitude toward AI of college students. International Journal of Metaverse, 2(1), 1–10. https://doi.org/10.54536/ijm.v2i1.2286
Obenza, B. N., Go, L. E., Francisco, J. a. M., Buit, E. E. T., Mariano, F. V. B., Cuizon, H. L., Jr, Cagabhion, A. J. D., & Agbulos, K. a. J. L. (2024). The Nexus between cognitive absorption and AI literacy of college students as moderated by sex. American Journal of Smart Technology and Solutions, 3(1), 32–39. https://doi.org/10.54536/ajsts.v3i1.2603
Obenza, B. N., Caballo, J. H. S., Caangay, R. B. R., Makigod, T. E. C., Almocera, S. M., Bayno, J. L. M., Camposano, J. J. R., Cena, S. J. G., Garcia, J. A. K., Labajo, B. F. M., & Tua, A. G. (2024). Analyzing University Students’ Attitude and Behavior Toward AI Using the Extended Unified Theory of Acceptance and Use of Technology Model. American Journal of Applied Statistics and Economics, 3(1), 99–108. https://doi.org/10.54536/ajase.v3i1.2510.
Obenza-Tanudtanud, D. M. N., & Obenza, B. N. (2024). Assessment of Educational Digital Game-Based Learning and Academic Performance of Grade Six Pupils. American Journal of Interdisciplinary Research and Innovation, 3(1), 1–9. https://doi.org/10.54536/ajiri.v3i1.2338.
Passey, D., Shonfeld, M., Appleby, L., Judge, M., Saito, T., & Smits, A. (2018). Digital agency: Empowering equity in and through education. Technology Knowledge and Learning, 23(3), 425–439. https://doi.org/10.1007/s10758-018-9384-x
Ringle, N., Sarstedt, N., & Straub, N. (2012). Editor’s comments: A critical look at the use of PLS-SEM in “MIS Quarterly.” MIS Quarterly, 36(1), iii. https://doi.org/10.2307/41410402
Sarstedt M., Ringle C.M. and Hair J.F. (2017) Partial Least Squares Structural Equation Modeling. In: Homburg C, Klarmann M and Vomberg A (eds) Handbook of Market Research. Heidelberg: Springer. https://www.researchgate.net/publication/319669432_Partial_Least_Squares_Structural_Equation_Modeling
Shmueli, G., Ray, S., Estrada, J. M. V., & Chatla, S. B. (2016). The elephant in the room: Predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564. https://doi.org/10.1016/j.jbusres.2016.03.049
Siddiq, F., Gochyyev, P., & Wilson, M. (2017). Learning in Digital Networks – ICT literacy: A novel assessment of students’ 21st century skills. Computers & Education, 109, 11–37. https://doi.org/10.1016/j.compedu.2017.01.014
Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48, 1273-1296. https://doi.org/10.1007/s11165-016-9602-2
Taherdoost, H. (2016). Sampling methods in research methodology; How to choose a sampling technique for research. International Journal of Academic Research in Management (IJARM), 5, 18-27. DOI: 10.2139/ssrn.3205035
Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., & Zhou, D. (2022). Self-Consistency improves chain of thought reasoning in language models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2203.11171
Wang, Y., & Lu, X. (2023). Research on the evaluation and cultivation design of ai literacy to promote cognitive intelligence development. 2023 International Conference on Culture-Oriented Science and Technology (CoST). https://doi.org/10.1109/cost60524.2023.00032
Yang, G., Ryo, M., Roy, J. et al. Multiple anthropogenic pressures eliminate the effects of soil microbial diversity on ecosystem functions in experimental microcosms. Nat Commun 13, 4260 (2022). https://doi.org/10.1038/s41467-022-31936-7
Yi, Y., & Park, Y. (2021). Establishing a definition of ai literacy and designing a liberal arts education program. Journal of Language & Literature, 85, 451–474. https://doi.org/10.15565/jll.2021.03.85.451